Special Relativity Theory
Special relativity is a theory proposed by Albert Einstein Eric Weisstein's World of Biography that describes the propagation of matter and light at high speeds. It was invented to explain the observed behavior of electric and magnetic fields, which it beautifully reconciles into a single so-called electromagnetic field, and also to resolve a number of paradoxes that arise when considering travel at large speeds.
When Einstein applied his theory to gravitational fields, he derived the "curved space-time continuum" which depicts the dimensions of space and time as a two-dimensional surface where massive objects create valleys and dips in the surface. This aspect of relativity explained the phenomena of light bending around the sun, predicted black holes as well as the Cosmic Microwave Background Radiation (CMB) -- a discovery rendering fundamental anomalies in the classic Steady-State hypothesis. For his work on relativity, the photoelectric effect and blackbody radiation, Einstein received the Nobel Prize in 1921.
In 1905, Albert Einstein published the theory of special relativity, which explains how to interpret motion between different inertial frames of reference — that is, places that are moving at constant speeds relative to each other.
Einstein explained that when two objects are moving at a constant speed as the relative motion between the two objects, instead of appealing to the ether as an absolute frame of reference that defined what was going on. If you and some astronaut, Amber, are moving in different spaceships and want to compare your observations, all that matters is how fast you and Amber are moving with respect to each other.
Special relativity includes only the special case (hence the name) where the motion is uniform. The motion it explains is only if you’re traveling in a straight line at a constant speed. As soon as you accelerate or curve — or do anything that changes the nature of the motion in any way — special relativity ceases to apply. That’s where Einstein’s general theory of relativity comes in, because it can explain the general case of any sort of motion.
Einstein’s theory was based on two key principles:
The principle of relativity: The laws of physics don’t change, even for objects moving in inertial (constant speed) frames of reference.
The principle of the speed of light: The speed of light is the same for all observers, regardless of their motion relative to the light source. (Physicists write this speed using the symbol c.)
The genius of Einstein’s discoveries is that he looked at the experiments and assumed the findings were true. This was the exact opposite of what other physicists seemed to be doing. Instead of assuming the theory was correct and that the experiments failed, he assumed that the experiments were correct and the theory had failed.
In the latter part of the 19th century, physicists were searching for the mysterious thing called ether — the medium they believed existed for light waves to wave through. The belief in ether had caused a mess of things, in Einstein’s view, by introducing a medium that caused certain laws of physics to work differently depending on how the observer moved relative to the ether. Einstein just removed the ether entirely and assumed that the laws of physics, including the speed of light, worked the same regardless of how you were moving — exactly as experiments and mathematics showed them to be!
UNIFYING SPACE AND TIME
Einstein’s theory of special relativity created a fundamental link between space and time. The universe can be viewed as having three space dimensions — up/down, left/right, forward/backward — and one time dimension. This 4-dimensional space is referred to as the space-time continuum.
If you move fast enough through space, the observations that you make about space and time differ somewhat from the observations of other people, who are moving at different speeds.
You can picture this for yourself by understanding the thought experiment depicted in this figure. Imagine that you’re on a spaceship and holding a laser so it shoots a beam of light directly up, striking a mirror you’ve placed on the ceiling. The light beam then comes back down and strikes a detector.
Special relativity is a theory proposed by Albert Einstein Eric Weisstein's World of Biography that describes the propagation of matter and light at high speeds. It was invented to explain the observed behavior of electric and magnetic fields, which it beautifully reconciles into a single so-called electromagnetic field, and also to resolve a number of paradoxes that arise when considering travel at large speeds.
When Einstein applied his theory to gravitational fields, he derived the "curved space-time continuum" which depicts the dimensions of space and time as a two-dimensional surface where massive objects create valleys and dips in the surface. This aspect of relativity explained the phenomena of light bending around the sun, predicted black holes as well as the Cosmic Microwave Background Radiation (CMB) -- a discovery rendering fundamental anomalies in the classic Steady-State hypothesis. For his work on relativity, the photoelectric effect and blackbody radiation, Einstein received the Nobel Prize in 1921.
In 1905, Albert Einstein published the theory of special relativity, which explains how to interpret motion between different inertial frames of reference — that is, places that are moving at constant speeds relative to each other.
Einstein explained that when two objects are moving at a constant speed as the relative motion between the two objects, instead of appealing to the ether as an absolute frame of reference that defined what was going on. If you and some astronaut, Amber, are moving in different spaceships and want to compare your observations, all that matters is how fast you and Amber are moving with respect to each other.
Special relativity includes only the special case (hence the name) where the motion is uniform. The motion it explains is only if you’re traveling in a straight line at a constant speed. As soon as you accelerate or curve — or do anything that changes the nature of the motion in any way — special relativity ceases to apply. That’s where Einstein’s general theory of relativity comes in, because it can explain the general case of any sort of motion.
Einstein’s theory was based on two key principles:
The principle of relativity: The laws of physics don’t change, even for objects moving in inertial (constant speed) frames of reference.
The principle of the speed of light: The speed of light is the same for all observers, regardless of their motion relative to the light source. (Physicists write this speed using the symbol c.)
The genius of Einstein’s discoveries is that he looked at the experiments and assumed the findings were true. This was the exact opposite of what other physicists seemed to be doing. Instead of assuming the theory was correct and that the experiments failed, he assumed that the experiments were correct and the theory had failed.
In the latter part of the 19th century, physicists were searching for the mysterious thing called ether — the medium they believed existed for light waves to wave through. The belief in ether had caused a mess of things, in Einstein’s view, by introducing a medium that caused certain laws of physics to work differently depending on how the observer moved relative to the ether. Einstein just removed the ether entirely and assumed that the laws of physics, including the speed of light, worked the same regardless of how you were moving — exactly as experiments and mathematics showed them to be!
UNIFYING SPACE AND TIME
Einstein’s theory of special relativity created a fundamental link between space and time. The universe can be viewed as having three space dimensions — up/down, left/right, forward/backward — and one time dimension. This 4-dimensional space is referred to as the space-time continuum.
If you move fast enough through space, the observations that you make about space and time differ somewhat from the observations of other people, who are moving at different speeds.
You can picture this for yourself by understanding the thought experiment depicted in this figure. Imagine that you’re on a spaceship and holding a laser so it shoots a beam of light directly up, striking a mirror you’ve placed on the ceiling. The light beam then comes back down and strikes a detector.
Comments
Post a Comment